

Overheight Vehicle Detector System

OVERHEIGHT VEHICLE STOP

Each time a high sided vehicle approaches infrastructure that runs over the road it is travelling on, there are serious potential consequences for the driver, others in the vicinity and the infrastructure in question.

We have technology solutions to help prevent incidents associated with 'overheight vehicles' and protect both the infrastructure and the user.

Coeval's vehicle warning systems use sensors to constantly monitor traffic flow on approaches to the infrastructure, such as a gantry or bridge. This means it can identify an overheight vehicle in advance of it reaching the infrastructure that they are too high to pass through. When an overheight vehicle is detected an intelligent LED sign illuminates, instructing the driver to take the nominated diversion, stop or turn back.

With this simple measure, Coeval's OVD System directly addresses the issue of drivers not knowing the height of their vehicle. As well as the clear benefits of their responsive nature, the signs are robust, vandal resistant and visible in all conditions — an especially crucial benefit in the winter, where driver visibility can be a challenge. The sign technology is fully customisable, so the message is bespoke to its location, providing specific instructions to the driver. The signs can be accessed locally or remotely when using our Cloud Control Solution.

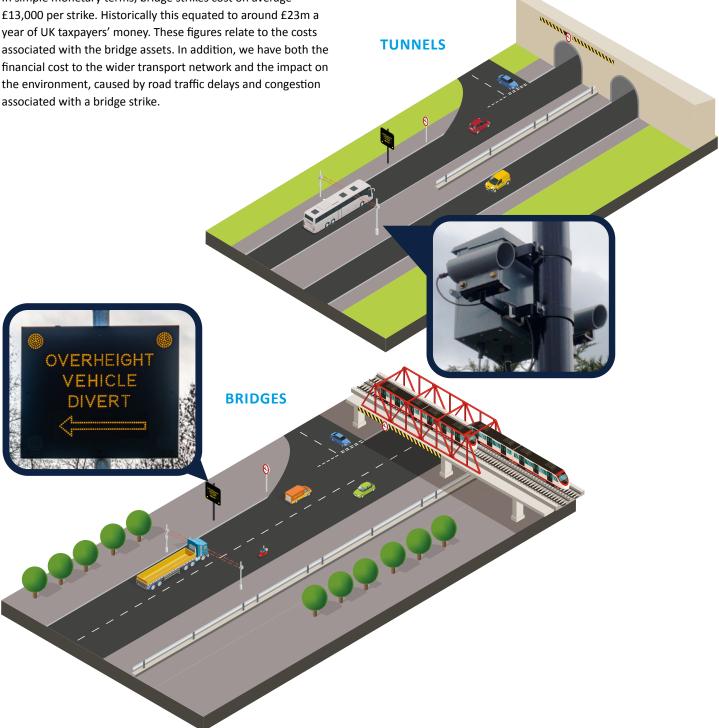
These signs have been shown to reduce bridge strikes wherever they have been implemented.

KEY FEATURES & FUNCTIONALITY

- Approved to TOPAS Specification
- · 2 or 4 beam detection options
- More easily noticed by drivers than static signs
- · Visible in all conditions, including at night
- Flexible to your needs displaying bespoke messaging
- Remotely controllable signs when using our cloud-based software

SERVICES

- Site surveys
- Extended warranty options
- Maintenance regimes
- Data analysis

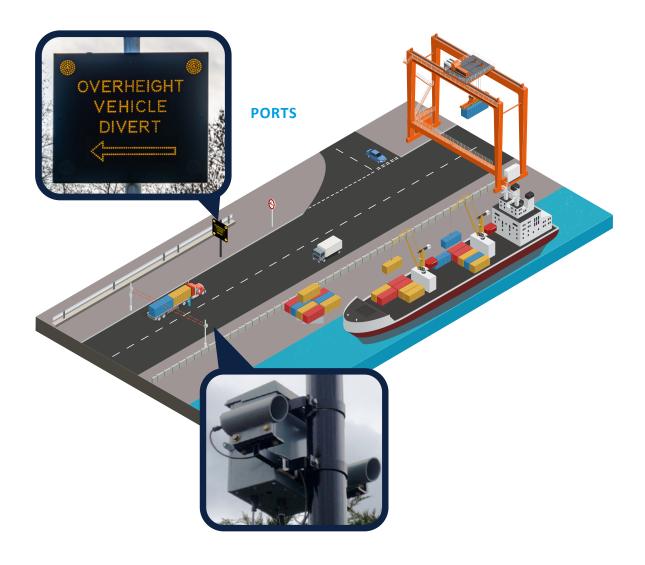


Bridge strikes are costly to both rail and road network operators; creating hours of delay and disruption for all involved and risking the lives of anyone directly or indirectly involved.

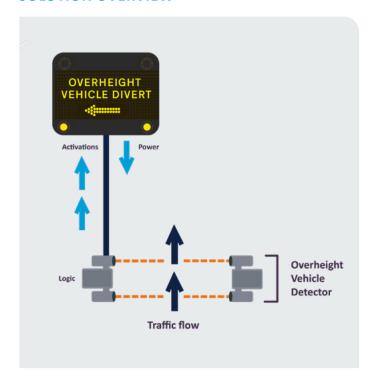
An average of five bridge strikes occur every day - potentially endangering lives every time - despite the current risk reduction initiatives. At best, there is no negative impact on human life, but each strike causes infrastructure damage resulting in disruption to both rail and road users.

In simple monetary terms, bridge strikes cost on average £13,000 per strike. Historically this equated to around £23m a year of UK taxpayers' money. These figures relate to the costs the environment, caused by road traffic delays and congestion The physical infrastructure around the bridge location plays an important part in advising, informing, and enabling HGV and bus drivers to avoid low bridges, with more effective warning signage and improved turning areas, for example.

The same applies to tunnels where drivers of high-sided vehicles need to be informed and made aware of the height of the infrastructure and to turn around / divert if their vehicle is too high.



The port environment can be difficult to work within, operating 24 hours a day, in all conditions, with multiple employers and contractors carrying out different activities. Add to this the operation of workplace transport in close proximity to pedestrian workers and there is an increased risk of accidents.


With many different people driving around ports and not all of them being familiar with the environment, accidents involving transport occur every year resulting in people being seriously or fatally injured.

We have been working in a highway environment for over 30 years and are now applying our technology solutions to other environments including ports. Our OVD technology is one solution, designed to warn HGVs of port infrastructure where their vehicle is too high to pass through and redirect them safely.

SOLUTION OVERVIEW

 $\textbf{Disclaimer:} \ All \ Information \ contained \ in \ this \ document \ is \ up-to-date \ and \ correct \ at \ the \ date \ of \ issue. \ E\&OE. \ Issue \ no: 2 - 22.2.22$

TECHNICAL SPECIFICATIONS

TYPES OF SYSTEM	
Two beam	Direction sensing single height system with beam redundancy.
Four beam	Dual height system with direction sensing and beam redundancy on both.

SYSTEM SPECIFICATIONS	
Certified to	TOPAS 2515B
Power Supply	55W each: 115V/230V +15/ 23% @ 45-440Hz
Output Relays	Mechanical: parallel contacts 250VAC @ 1A/30VDC @ 3A each. Solid state: 60-280VAC @ 2A (28A peak)
Sign Aspect Control	Up to 8 channels (20 using encoding)
Working Range	Up to 35m (optionally up to 50m)
Maximum Detectable Vehicle Speed	Present to 70 mph (113 kmph)
Minimum Detectable Object size	100mm x 100mm @ max speed
Alarm Duration	1 to 99 Seconds (nominal: 15)
Presence Detection	Up to 2 inductive loops
Control Box Dimensions	450mm X 318mm X 210mm
Control Box Construction/Material	Welded steel, polyester painted Aircraft Grey BS381C Shade 693 Semi-Gloss
Head Construction/ Material	Machined Aluminium alloy, alochromed and painted Aircraft Grey BS381C Shade 693 Semi-Gloss.
Head Bracket Construction/Material	Welded steel, zinc plated/painted
Overall System Sealing Standard	IP65 to IP66
Weight	23Kg to 36Kg per box (1 to 4 beam)
Remote Monitoring	3rd Party external or internal options

Speak to our experts, contact us today on 0141 255 0840

ABOUT US

Coeval delivers infrastructure technology that advises, informs and influences road users to help create a safer environment for us all. Visit our website to see our wider solution offering.

t 0141 255 0840 e info@coeval.uk.com

coeval.uk.com

